
General random pseudofractal networks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 13279

(http://iopscience.iop.org/1751-8121/40/44/009)

Download details:

IP Address: 171.66.16.146

The article was downloaded on 03/06/2010 at 06:23

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/44
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 13279–13289 doi:10.1088/1751-8113/40/44/009

General random pseudofractal networks

Lei Wang, Hua-ping Dai and You-xian Sun

State Key Laboratory of Industrial Control Technology, Institute of Industrial Control, Zhejiang
University, Hangzhou 310027, Zhejiang, People’s Republic of China

E-mail: leiwang@iipc.zju.edu.cn and hpdai@iipc.zju.edu.cn

Received 30 May 2007, in final form 25 September 2007
Published 16 October 2007
Online at stacks.iop.org/JPhysA/40/13279

Abstract
We introduce a general random pseudofractal network model by assigning
fitness to each edge. In this model, continuous growth and attachment,
determined by their fitness of already existing edges, are the two ingredients.
We obtain the analytical results that our model exhibits a power-law degree
distribution with exponent γ = 2 + m(1 + αm)−1, where m and α are tunable
parameters. We also show that a general random pseudofractal network has
a large clustering coefficient and a small average distance leading to a small-
world effect. These theoretical results agree well with numerical simulations.

PACS numbers: 89.75.−k, 05.10.−a, 05.45.−a

1. Introduction

The past decade has witnessed a recognition that real-world networks arising in physical,
social and biological systems are fundamentally different from the random graph models
[1, 2]. Despite diversity, these networks generally exhibit statistical and topological properties.
The most relevant among these properties are small-world effect [3] and scale-free feature
[4]. The small-world effect implies that a network has a high degree of clustering and a
short average distance. And scale-free networks are characterized by a power-law degree
distribution P(k) ∼ k−γ , where k is the degree of a node and the exponent γ is a positive real
number, controlling the broadness of the distribution.

Motivated by these results, a considerable number of network models have been proposed
in order to capture the above properties [5–13]. Most are based on two ingredients originally
introduced by Barabási and Albert [4]: growth and preferential attachment. In Barabási–
Albert (BA) model, the network starts from a small number of nodes (m0). At every time
step, a new node is added and connected to m (m � m0) different nodes with the probability
linearly proportional to the degree of the target node. Such a growth rule generates a power-
law degree distribution with the exponent γ = 3. Actually, scale-free and small-world are
not exclusive in real-world networks. Much valuable work has been focused on this topic
[14–17]. In this endeavor, an interesting model, which is also an improvement of the BA model,

1751-8113/07/4413279+11$30.00 © 2007 IOP Publishing Ltd Printed in the UK 13279

http://dx.doi.org/10.1088/1751-8113/40/44/009
http://stacks.iop.org/JPhysA/40/13279


13280 L Wang et al

is called pseudofractal network (PN) based on the fact that the structure of such a network
has no fixed finite fractal dimension. PN was first introduced by Dorogovtsev and Mendes
et al owing to citation graphs [18, 19]. The growth starts from a single edge connecting two
nodes. At each time step, a new node is added to every edge of the graph, which is attached
to both end nodes of the edge. Then a deterministic network model with a fixed average
degree is constructed. Subsequently, Comellas [20] and Zhang [21] et al extended the PN to
a process of edge multiplication by a recursive method, respectively. Analytical results show
that these deterministic models have small-world and scale-free properties simultaneously.
Recent studies also show random PNs [22–24] have a large clustering coefficient, a small
average distance and a power-law degree distribution. In particular, random PN has the same
power-law exponent as the BA’s, and the fact that a new node is connected to both ends of
a randomly chosen edge by two new edges, implying the preferential attachment. However,
the exponent of power-law distribution usually ranges between 2 and 3 in most real systems.
The above models have difficulty in capturing the property. Wang et al [25] introduced fitness
competition to random PNs, and deduced the degree distribution such that P(k) ∼ k−γ for
large k, where γ = 2 + (1 + α)−1, and α is the competition parameter. By adjusting α, one can
obtain a variety of scale-free networks.

In this paper, we present a general random PN by a simple recursive rule. The proposed
model is still called the pseudofractal network, stemming from the pioneering work of
Dorogovtsev and Mendes. Also similar to the fractal, the mechanism of the general random
PNs is recursive and self-similar. Of course, in general PNs, only one new type of structure
appears, which is different from the fractal in all scales. The rest of this paper is organized
as follows. Section 2 provides a detailed description of the general random PN model. In
section 3, we give analytical and simulation results of the network properties including degree
distribution, clustering coefficient and average distance. Finally, we draw the main conclusions
in section 4.

2. A general random pseudofractal network model

In this section, we describe a model of growing network, which is constructed by a simple
rule. We denote nodes in our network by Ni with i = −1, 0, 1, 2, . . . , the edge between nodes
Np and Nq by NpNq . In this network, all nodes are considered to be distributed on a ring. We

denote by ̂NpNq an arc of the corresponding edge NpNq , and lpq the length of arc ̂NpNq . Then
fpq = lαpq is defined as the fitness of an edge NpNq with α � 0. As a matter of fact, all nodes
will not be distributed on a ring since all edges in fractal are of the same length. Assigning all
nodes onto the same ring is easy to understand the fitness and node adding evolution.

The network starts from an initial state of two nodes N−1, N0, connecting by an edge
N−1N0 at t = 0. At t = 1,m nodes orderly connected by m + 1 edges are attached to node N0

and N−1, forming an (m + 2)-regular polygon. Obviously, all nodes are distributed on a ring.
For t � 2, an edge NiNj is selected with the probability linearly proportional to the edge’s
fitness, and m nodes orderly connected by m + 1 edges are added to both ends of NiNj , where
NiNj can be any edge present in the network at time t, the newly added edges whose nodes
are all distributed on the same ring are of the same length. In particular, we label these newly
added nodes as Ni∗T +t for all t � 1, i = 0, 1, 2, . . . , m − 1, and the arc length of the new
edges as l(t) at t time step, where T is a sufficiently large natural number. The growing process
is repeated until the network reaches the desired size. Figure 1 shows a possible process of
the general random PN with m = 2. Note that figure 1 is just a demonstration of fitness and
network evolution, not the real case of the edge length.
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Figure 1. Scheme of a general random PN growth with m = 2. The figures from (a) to (f ) show
a possible process for the general random PN. The growth starts from an edge N−1N0 with two
nodes N−1, N0 at t = 0 (a). At the first time step t = 1, the edge N−1N0 is selected. Nodes
N1, NT +1 and three edges N−1NT +1, N0N1, N1NT +1 are all added to the growing network (b).
Then we obtain a square and its circumcircle (red dashed line). At the second time step, the edge
NT +1N1 is selected with a certain probability, then nodes N2, NT +2 and edges NT +1N2, NT +2N2,
and N2N1 are added to the third point of the arc ̂N1NT +1 (c). Other sub-figures can be given in a
similar way. With this rule, one can easily get a general random PN. Obviously, a third point may
be selected more than once shown in (f ).

(This figure is in colour only in the electronic version)

In a general random PN, the number of nodes and edges is mt + 2 and (m + 1)t + 1,
respectively. Then the average degree of the whole network is equal to 2(m + 1)m−1 when t
is big enough. Besides, all newly added arc lengths are the same and their sum is equal to the
arc length of the selected edge at each time step. Therefore,

Sl(t + 1) = Sl(t) + l(v), (1)

and

Sf (t + 1) = Sf (t) + (m + 1)

(
l(v)

m + 1

)α

, (2)

where l(v) is the length of the selected arc, Sl(t) and Sf (t) are the arc length sum and fitness
sum at t time step, respectively. The general random PN will reduce to a special random PN
with competition if m = 1. In this situation, fitness does no longer work, and all edges are of
the same fitness. That is to say, fitness selection is replaced by preferential attachment, which
is similar to the BA model.

3. Properties of the general PNs

The degree distribution, clustering coefficient and average distance are three important
properties to understand the complex dynamics of real-life systems. In this section, we
focus on the three parameters.
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3.1. Degree distribution

Let the average arc length l(i) be the expectation value of l(i), and the initial arc length be
l(0) = l(j ∗ T + 1) = 1 for all j = 0, 1, 2, . . . , m − 1, where l(0) = l−10. Then the average
fitness at the ith time step satisfies

f (i) = l
α
(i). (3)

According to the mechanism of the growing PN, edge NxNy already present in our network is
selected in the probability pu(i) such that

pu(i) = f (u)

Sf (i)
(4)

at time step i, where u = max{x, y}, Sf (i) = 1 + (m + 1)
∑i−1

j=1 l
α
(j) is the average fitness

sum at time step i. Then the evolution equation of the average arc length can be written as

l(t) =
t−1∑
j=1

l(j)pj (t). (5)

Putting equations (4) and (5) together, we obtain

l(t) = 1 + (m + 1)
∑t−1

j=1 l
1+α

(j)

(m + 1)
(
1 + (m + 1)

∑t−1
j=1 l

α
(j)

) (6)

with t = 2, 3, . . . and l(1) = 0.5. As has been shown in [25], equation (6) is rewritten in a
continuous approximation as

l(t) =
∫ t

0 l
1+α

(v) dv

(m + 1)
∫ t

0 l
α
(v) dv

. (7)

when time step t is sufficiently large and fitness sum Sf (t) satisfies the condition Sf (t) � 1.
The following supplies the detailed solving process of the continuous evolution

equation (7). It follows from equation (7) that the derivative of average arc length, l̇(t),
is satisfied with

l̇(t) = − ml
1+α

(t)

(m + 1)
∫ t

0 l
α
(v) dv

. (8)

Substituting the integral term of equation (8) into equation (7), we have

l̇(t)

l(t)
= − ml

1+α
(t)∫ t

0 l
1+α

(v) dv
. (9)

Let g(t) = ∫ t

0 l
1+α

(v) dv, it is straightforward to get ġ(t) = l
1+α

(t) and l̇(t) =
(1 + α)−1l

−α
(t)g̈(t), where g̈(t) is the derivative of ġ(t). Substituting these expressions

into equation (9) yields

g̈(t)

ġ(t)
= −m(α + 1)

ġ(t)

g(t)
. (10)

Applying
∫ t

0 dv to both sides of equation (10) twice, one gets g(t) = [(m(α + 1) + 1)t]
1

m(α+1)+1 .
Thus we have

l(t) =
(

β

mt

)β

, (11)
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and

Sf (t) =
(

β

mt

)αβ−1

, (12)

where initial values are selected as g(0) = ġ(0) = 1, and β = m(m(α + 1) + 1)−1. Obviously,
the fitness sum Sf (t) � 1 holds since α and m are both positive constants. Also note that the
exact expression of l(t) is of the following form,

l(t) = c1

(
β

m(t + c2)

)β

, (13)

where c1 and c2 are constants determined by the initial values. Actually, the constant c1, no
matter what value is selected, will not affect the following results. And the constant c2 can be
ignored when t is large enough. Therefore, the following derivation involves approximation
in equation (11) for simplification.

Another important parameter used to compute degree distribution is average node strength.
Denote the average strength of node Ni by s(i, t) at time t, and s(i, t) is defined as the fitness
sum of edges that connects to node Ni . According to the evolution of general random PNs,
we have

∂s(i, t)

∂t
= s(i, t)f (t)

Sf (t)
, (14)

accounting for the boundary condition s(i, i) = 2f (i). Recalling equation (11), we easily
derive the solution

s(i, t) = 2βαβm−αβ i−
β(mα+1)

m t
β

m . (15)

Hereby, we can compute the degree distribution from continuous expressions of average
arc length, fitness sum and node strength. The degree distribution of the node Ni in the
continuous approximation is p(k, i, t) = δ(k − k(i, t)), where δ(·) is the δ-function, and
k(i, t) is the average degree of the node Ni at time t. Then we have

∂k(i, t)

∂t
= s(i, t)

Sf (t)
, (16)

where k(i, i) = 2. Applying
∫ t

i
dt to both sides of equation (16), we obtain the solution,

k(i, t) = 2

1 + αβ

(
t

i

) β(1+αm)

m

− 2

1 + αβ
+ 2. (17)

In the continuous approximation [10], one can find the distribution P(k, t) using the derived
k(i, t),

P(k, t) = −1

t

(
∂k(i, t)

∂i

)−1

. (18)

Therefore, the degree distribution can be written as

P(k, t) = (γ − 1)

(
1 + αβ

2

)1−γ (
k − 2αβ

1 + αβ

)−γ

, (19)

where γ = 2 + m(1 + αm)−1. Thus, in the region k � 2αβ(1 + αβ)−1, we obtain the
stationary degree distribution, P(k) ∼ k−γ confirming a power-law. If selecting m = 1, the
power-law exponent is γ = 2 + (α + 1)−1 in accordance with the results in [25]. Obviously,
by tuning the parameters α and m, it is possible to obtain a variety of scale-free networks with
different exponents in the range, γ > 2. In figure 2, we report the simulation results of the
degree distribution for several values of α and m. From figure 2, we can see that the degree
distribution follows a power-law for large degree values, which agrees well with the analytical
results.
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Figure 2. The degree distribution of the general random PNs, where the network size
N = 105,m = 2. The four sub-figures show the results with α = 0 (∗, a), α = 0 (+, b),
α = 0 (·, c) and α = 0 (�, d). In these figures, the curves (black) are the theoretical results, while
the marks (∗, +, · and �) are the simulation results. Obviously, all degree distributions follow a
power-law.

3.2. Clustering coefficient

A remarkable difference between the random PNs with competition and the proposed model
in this paper is the size of the smallest loops. For example, the smallest loop in random PNs
with competition is triangle, while the general model can be represented by a grid-like frame
or a more complex structure. Obviously, the clustering coefficient, defined as the fraction of
triangles present in the network, is unable to quantify the proposed network’s structure. Then
we define a clustering coefficient of order x for a node Ni as the probability that there is a
distance of length x between two neighbors of a node Ni , namely, the higher order clustering
coefficients follow [26, 27]:

Ci(x) = 2Ei(x)

ki(ki − 1)
, (20)

where ki denotes the degree of node Ni , and Ei(x) is the number of x-distance between two
neighbors of node Ni . The clustering coefficient C(x) is the average value of Ci(x) over the
whole network, i.e.,

C(x) = 1

N

N∑
i=1

Ci(x), (21)

where N is the number of nodes. Note that
∑

xC(x) = 1 and C(x) will reduce to the standard
clustering coefficient for x = 1.
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Figure 3. The clustering coefficients of the general random PNs for various α, where the network
size N = 105, m = 2. The stars and the curve are the simulation and analytical results, respectively.
From the figure, we can see that the two results almost have the similar tendency as α increases
to 2. Yet there exist quite large errors between the numerical simulations and analytical results
derived from the degree distribution in equation (19).

In general random PNs, Ei will increase by 1 if the degree of a node Ni increases by 1 at
a certain time step. Then we can write down the expression of Ei in terms of ki :

Ei = ki − 1. (22)

Substituting equation (22) into equation (20) gives Ci = 2k−1
i , indicating that the local

clustering scales as C(k) ∼ k−1. Then,

C = 2

N

N∑
i=1

1

ki

, (23)

we further rewrite equation (23) in a continuous form as

C = 2
∫ kmax

kmin

P(k)

k
dk, (24)

where kmin and kmax are the minimal and maximal degrees respectively, P(k) = θk−γ with
γ = 2 + m(1 + αm)−1 and θ a constant, which is determined by the normalization equation∫ kmax

kmin
P(k) dk = 1. It is clear that kmin = 2 and kmin � kmax for sufficiently long time evolution.

Then we can deduce the approximate analytical result C(α,m) such that

C(α,m) = γ − 1

γ
= 1 + m(α + 1)

2 + m(α + 2))
. (25)

This value is quite large and depends on α and m. Figure 3 shows C as a function of α for
different m. However, there exist some errors between the analytical and numerical results.
One key reason is that the degree distribution P(k) does not follow a power law for small k,
and the nodes with small degree have a high local clustering and a large percentage in the
whole network. In other words, though equation (19) can characterize the key property of
degree distribution, there is difficulty in computing the clustering coefficient directly using the
degree distribution obtained above.
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Table 1. Clustering coefficients of general random PNs for various m, where α = 0 and network
size N = 105.

P(2) P (3) . . . α = 0

m TRa SRb TR SR . . . TR SR

1 0.5000 0.5000 0.2000 0.2002 . . . 0.7392 0.7396
2 0.6000 0.6001 0.2000 0.2001 . . . 0.8118 0.8122
3 0.6667 0.6666 0.1905 0.1906 . . . 0.8529 0.8526
4 0.7143 0.7144 0.1786 0.1785 . . . 0.8794 0.8798
. . . . . . . . . . . . . . . . . . . . . . . .

a Theoretical results.
b Simulation results.

Consider a special case α = 0. Here the rate equation [5] is adopted to solve the
computation of clustering coefficient. In general random PNs, we denote the average number
of nodes with degree k by n(k, t) at time t, then,

n(k + 1, t + 1) = k

Se(t)
n(k, t) +

(
1 − k + 1

Se(t)

)
n(k + 1, t), (26)

where Se(t) = (m + 1)t + 1 is the edge sum of the network at t time step, n(k, t) ≈ mtP (k)

for large t. And the first term on the right-hand side of equation (26) accounts for the process
in which a node with k degree is connected to the new node, leading to a gain in the number
of nodes with k + 1 degree. A corresponding role is played by the second loss term on the
right-hand side of equation (27). Therefore, we derive the iterative expression

P(k + 1) = k

k + m + 2
P(k) (27)

for k � 2. When k � 2, P (k) ∼ k−γ with γ = m + 2. And P(2) is determined by the
following

m(t + 1)P (2) = m − 2mtP (2)

Se(t)
+ mtP (2), (28)

where the first term on the right-hand side of equation (28) accounts for the continuous
introduction of new nodes. Solving equation (28) gives

P(2) = m + 1

m + 3
. (29)

From the above discussions, we derive the same exponent γ for α = 0 via continuous
approximation and rate equation. However, for small k, the two analytical results show
quite different in computing clustering coefficient. To explain clearly, we here compute the
clustering coefficient C(0,m) by using the results in equations (27) and (28),

C(0,m) =
kmax∑

k=kmin

P(k)c(k), (30)

where c(k) = 2/k is the local clustering coefficient of a node with k degree. Note that
in general random PNs, nodes whose degrees are the same have the same local clustering
coefficients. Table 1 shows the analytical and numerical results. From table 1, we can see the
analytical results match the simulation very well.
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3.3. Average distance

The distance of node pairs in network means the minimum number of edges connecting the
pair of nodes. The average distance of the whole network can be considered as average over
all distances of pairs of nodes. From the view of mathematical description, a logarithmic
(or slower than logarithmic) average distance is the most important property of a small-world
network.

In the following, let dij denote the distance between nodes Ni and Nj,L(t) be the average
distance of the whole network at time step t. Then the total distance can be written as
σ(t) = ∑

i<j dij (t) = 1
2m2t2L(t) at time step t. Here we give a simple proof since the detail

is similar to the [15, 28].
In general random PNs, the distances between node pairs already present in the network

will not be affected by addition of new nodes and edges. Thus we have

σ(t + 1) = σ(t) +
m∑

j=1

E∑
i=1

di,E+j , (31)

where E = mt + 2 is the number of edges at time step t. Assume that nodes NE+j with
j = 1, 2, . . . , m are added to the (m + 2)-regular polygon whose nodes are labelled as Nxi

with i = 1, 2, . . . , m, and node pairs Nx1 , NE+1 and Nxm
,NE+m, are respectively connected

by corresponding edges. Following from this assumption, we have

di,E+j = min
{
di,x1 + dx1,E+j + j, di,xm

+ dxm,E+j + m + 1 − j
}
, (32)

for all j = 1, 2, . . . , m.
Furthermore,

di,E+j < Di,x + m, (33)

where Di,x = min{di,x1 , di,xm
}. Substituting equation (33) into equation (31) gives

σ(t + 1) < σ(t) +
E∑

i=1

Di,x + m2E. (34)

Consider the second term on the right-hand side of equation (34) can be approximated as the
total distance from one node x to all the other nodes in general random PNs at t − 1 time step,
namely,

E∑
i=1

Di,x ≈ 2σ(t − 1)

m(t − 1)
<

2σ(t)

mt
. (35)

The total distance and average distance increase monotonously with time step. As a result,
the inequality in equation (35) holds.

Substituting equation (35) into equation (34), we have

σ(t + 1) < σ(t) +
2σ(t)

mt
+ m3t + 2m2. (36)

If equation (35) is written as an equation, then the continuous approximation is

dσ(t)

dt
= 2σ(t)

mt
+ m3t + 2m2, (37)

which leads to a solution such that

σ(t) =
⎧⎨
⎩

t2 ln t − 2t + c1t
2 m = 1

8t2 + 8t ln t + c2t m = 2

2(m − 1)−1m3t2 + 2(m − 2)−1m3t + c3t
2
m m > 2

(38)
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Figure 4. The dependence between average distance L(t) and the network size t of the general
random PNs with m = 2 and α = 0 (�), α = 0.5 (∗) and α = 1 (+). The figure shows that L(t)

is almost linear in log–log coordinate.

where c1, c2 and c3 are all constants. When m = 1, the average distance increases
logarithmically with the network size. For others, the increasing tendency of average distance
L(t) is a little slower than ln t . Figure 4 shows the numerical simulations. Obviously, in
general random PNs, average distance L(t) grows slower than ln t as t increases.

4. Conclusion

In summary, we have presented a general random PN model by a simple rule. The rule
is realized by assigning fitness to each edge, in which the fitness is related to the arc
length of a ring. Continuous growth and connection, governed by the rule, will evolve a
general random PN. From the above discussions, we have obtained both analytically and
numerically the solutions that the general random PN model exhibits scale-free properties
with γ = 2 + m(1 + αm)−1. By adjusting α and m, we can derive a variety of scale-free
networks. In the meantime, the proposed model shows a small-world effect, i.e., the general
random PNs have a large clustering coefficient with a hierarchical structure as c(k) ∼ k−1, and
a small average distance scaling slower logarithmically with network size. All these typical
properties confirm the real-world networks.
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[27] Lind P G, González and Herrmann H J 2005 Phys. Rev. E 72 056127
[28] Zhang Z, Rong L and Comellas F 2006 J. Phys. A: Math. Gen. 39 3253

http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1103/PhysRevLett.85.4629
http://dx.doi.org/10.1103/PhysRevLett.85.4633
http://dx.doi.org/10.1103/PhysRevLett.86.5401
http://dx.doi.org/10.1103/PhysRevE.63.066123
http://dx.doi.org/10.1209/epl/i2000-00400-0
http://dx.doi.org/10.1103/PhysRevE.63.025101
http://dx.doi.org/10.1016/S0378-4371(02)01072-5
http://dx.doi.org/10.1103/PhysRevE.68.046126
http://dx.doi.org/10.1016/j.physa.2004.06.160
http://dx.doi.org/10.1103/PhysRevLett.94.018702
http://dx.doi.org/10.1103/PhysRevE.71.046141
http://dx.doi.org/10.1103/PhysRevE.71.036108
http://dx.doi.org/10.1088/0305-4470/39/8/003
http://dx.doi.org/10.1103/PhysRevE.63.062101
http://dx.doi.org/10.1103/PhysRevE.65.066122
http://dx.doi.org/10.1103/PhysRevE.69.037104
http://dx.doi.org/10.1016/j.physa.2006.11.006
http://dx.doi.org/10.1103/PhysRevE.69.026108
http://dx.doi.org/10.1103/PhysRevE.71.036127
http://dx.doi.org/10.1140/epjb/e2006-00389-0
http://dx.doi.org/10.1016/j.physa.2007.02.115
http://dx.doi.org/10.1016/S0378-4371(02)01336-5
http://dx.doi.org/10.1103/PhysRevE.72.056127
http://dx.doi.org/10.1088/0305-4470/39/13/005

	1. Introduction
	2. A general random pseudofractal network model
	3. Properties of the general PNs
	3.1. Degree distribution
	3.2. Clustering coefficient
	3.3. Average distance

	4. Conclusion
	Acknowledgments
	References

